Учебник. М.: Издательство "Изумруд", 2003. 3.2. МЕТОДЫ ОПТИМИЗАЦИИ В настоящее время менеджер может использовать при принятии решения различные компьютерные и математические средства. В памяти компьютеров держат массу информации, организованную с помощью баз данных и других программных продуктов, позволяющих оперативно ею пользоваться. Экономико-математические и эконометрические модели позволяют просчитывать последствия тех или иных решений, прогнозировать развитие событий. Методы экспертных оценок, о которых пойдет речь ниже, также весьма математизированы и используют компьютеры. Наиболее часто используются оптимизационные модели принятия решений. Их общий вид таков: F ( X X Є A Здесь Х - параметр, который менеджер может выбирать (управляющий параметр). Он может иметь различную природу - число, вектор, множество и т.п. Цель менеджера - максимизировать целевую функцию F ( X ), выбрав соответствующий Х .. При этом он должен учитывать ограничения X Є A на возможные значения управляющего параметра Х - он должен лежать в множестве А. Ряд примеров оптимизационных задач менеджмента приведен ниже. 3.2.1. Линейное программирование Среди оптимизационных задач менеджмента наиболее известны задачи линейного программирования, в которых максимизируемая функция F ( X ) является линейной, а ограничения А задаются линейными неравенствами. Начнем с примера. Производственная задача. Цех может производить стулья и столы. На производство стула идет 5 единиц материала, на производство стола - 20 единиц (футов красного дерева). Стул требует 10 человеко-часов, стол - 15. Имеется 400 единиц материала и 450 человеко-часов. Прибыль при производстве стула - 45 долларов США, при производстве стола - 80 долларов США. Сколько надо сделать стульев и столов, чтобы получить максимальную прибыль? Обозначим: Х - число изготовленных стульев, Х - число сделанных столов. Задача оптимизации имеет вид: 45 Х + 80 Х → max , 5 Х + 20 Х ≤ 400 , 10 Х Х ≤ 450 , Х ≥ 0 , Х ≥ 0 . В первой строке выписана целевая функция - прибыль при выпуске Х стульев и Х столов. Ее требуется максимизировать, выбирая оптимальные значения переменных Х и Х . При этом должны быть выполнены ограничения по материалу (вторая строчка) - истрачено не более 400 футов красного дерева. А также и ограничения по труду (третья строчка) - затрачено не более 450 часов. Кроме того, нельзя забывать, что число столов и число стульев неотрицательны. Если Х = 0, то это значит, что стулья не выпускаются. Если же хоть один стул сделан, то Х положительно. Но невозможно представить себе отрицательный выпуск - Х не может быть отрицательным с экономической точки зрения, хотя с математической точки зрения такого ограничения усмотреть нельзя. В четвертой и пятой строчках задачи и констатируется, что переменные неотрицатель